
ISRAEL J O U R N A L  OF M A T H E M A T I C S  128  (2002) ,  355 -379  

ELEMENTARY THEORIES 
OF COMPLETELY SIMPLE SEMIGROUPS 

BY 

BELLA V. ROZENBLAT 

Department of Mathematics, Department of Computer Science 
Ben-Gurion University of the Negev, POB 653, Beer-Sheva, 84105, Israel 

e-mail: bella@es.bgu.ac.il 

A B S T R A C T  

The connections between first-order formulas over a completely simple 
semigroup C and corresponding formulas over its structure group H are 
found in this paper. For the case of finite sandwich-matrix the criterion of 
decidability of the elementary theory T(C) is established in terms of the 
elementary theory of H in the enriched signature (Theorem 1). For the 
general case the criterion is established in terms of two-sorted algebraic 
systems (Theorem 2). Sufficient conditions in terms of H for decidability 
and for undecidability of T(C) are outlined. Corollaries and examples 
are presented, among them an example of a completely simple semigroup 
with a finite structure group and with undecidable elementary theory 
(Theorem 3). 

Introduct ion  
In the  sea of t oday ' s  research on semigroups  the  current  of comple te ly  s imple 

semigroups  occupies qui te  an i m p o r t a n t  place. A comprehensive  survey on the  

subjec t ,  including b rand  new results ,  is given in [P-R]. The  present  p a p e r  is de- 

voted  to  the  p rob lem of dec idabi l i ty  for e l emen ta ry  theories of comple te ly  s imple 

semigroups.  The  first resul ts  ob ta ined  in this  d i rec t ion  concerned re la t ive ly  free 

comple te ly  s imple semigroups,  and  were announced  in [R92] and [R93]. 

In  the  present  work we invest igate  the  e lementa ry  theory  of an a r b i t r a r y  com- 

ple te ly  s imple semigroup M ( H ,  I, J, P) and its connect ion wi th  the  theory  of the  

cor responding  s t ruc ture  group H.  I t  is easy to  t r ans l a t e  every closed f i rs t -order  
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formula ~ of the group signature into a corresponding closed first-order formula 

~* of the semigroup signature in such a way that ~ is valid on a group H iff 

~* is valid on a Rees matrix semigroup C = M(H, I, J, P). Such a translation 

is called t h e  e xac t  i n t e r p r e t a t i o n  of H in C and, in the case of undecidable 

T(H) ,  it implies the undecidability of T(C). The original aim of this research 

was to look for ways to translate in the opposite direction, i.e., to try to pass 

from an arbitrary first-order formula on C to an equivalent formula on H,  for 

several natural signatures of C and H. The reason is that if for some fixed signa- 

tures of C and H there exist such translations in both the forward and backward 

directions, then for these signatures the algorithmic behavior of the elementary 

theories of C and H is similar, i.e., the two theories are both decidable or both 

undecidable in this case. The present paper is the implementation of the original 

intentions under certain conditions. 

More precisely, in Section 2 we exactly interpret H in C (in Proposition 1, 

for the signature < • >, in Proposition 3, for some other signatures and for a 

normalized sandwich-matrix) and, for finite I and J,  we exactly interpret C in 

H × I × J for a convenient signature (Proposition 2). That  enables us to find 

sufficient conditions and necessary conditions for the decidability of T(C), and, 

in the case of finite I and J and a normalized sandwich-matrix, to establish the 

following criterion: this decidability is equivalent to the decidability of T(H) 
with constant symbols for elements belonging to P, and also it is equivalent to 

the decidability of T(H) with the unary predicate p(x) for membership in P 

(Theorem 1). 

The results of Section 3 are obtained for the general case, when I and J 

are not necessarily finite. We introduce for i0 E I, j0 C J the notion of the 

two-sorted algebraic system D(io,jo). It has basic sets H and I × J with the 

corresponding multiplication operation inside each of these sets and with the 

function ~r: I × J -+ H, which corresponds to the sandwich-matrix, obtained 

from P by the normalization according to the j0-th row and i0-th column. Then 

we exactly interpret C in D(i0, J0) (Lemma 3) and we interpret D(i0, J0) in C 

with the corresponding constant in the signature (Lemma 4). That  enables us to 

establish the criterion of decidability o fT(C)  in the general case: this decidability 

is equivalent to the decidability of the elementary theory of the class of all systems 

D(io,jo) (Theorem 2). 

In Section 4 we give an example of a completely simple semigroup Co over a 

three-element group such that T(Co) is undecidable (Theorem 3). This theorem 

is based on Theorem 2, and shows that the finiteness of I and J is a vital condition 
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for Theorem 1. 

In Section 1 we formulate propositions and theorems and then prove them in 

Sections 2, 3 and 4. We also deduce corollaries, among them: 

- the undecidability of the elementary theory for a free non-monogenic com- 

pletely simple semigroup 

1) of the variety of all completely simple semigroups over metabelian groups, 

2) of the variety C$(Afm) of all completely simple semigroups over groups from 

Arm, where Arm is the variety of all nilpotent groups of class m > 1 (Corollary 

1.1); 

- the decidability of the elementary theory for a free finitely generated completely 

simple semigroup 

1) of any variety of completely simple semigroups over abelian groups, 

2) of the variety CS(Afqm k) of all completely simple semigroups over groups from 

Arm qk with q prime and ra < q, where Afqm k is the variety of all nilpotent groups of 

class m and of exponent qk (Corollary 1.3); 

- the decidability of the elementary theory for any completely simple semigroup 

with a finite number of maximal subgroups, which are abelian (Corollary 1.2), 

and other corollaries. 
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theories of relatively free semigroups that lead me finally to investigate elemen- 
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interest in my talk at the Workshop on Semigroups, Formal Languages and Com- 

binatorics on Words (Kyoto, 1992) gave additional inspiration to my research, 

and U. Abraham, R. Lipyansky, G. Mashevitzky and S. Smith, whose advice 

helped me to improve the style of the paper. Thanks are also due to the ref- 

eree, whose deep comments and questions stimulated me to clarify proofs, to 

add important remarks, to correct a lot of typos, and to think about a possible 

generalization of the techniques of this paper to other classes of semigroups in 
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1. Definit ions,  notation~ formulat ion of  main results and corollaries 

Throughout this paper we use the following notation: 

- -  "equals by definition"; 

Lo - -  the class of all first-order formulas of a signature a (the signature may 

contain constant symbols, symbols for operations and for predicates); 
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T~(A) the elementary theory of the algebraic system A of the signature 

(this means the class of all closed formulas from L~ that are valid on A); 

A ~ ~ - -  the formula ~ is valid on A. 

In the terminology concerning first-order formulas and theories we follow [Ma]; 

in particular, the term a lgebra ic  s y s t e m  is equivalent to a lgebra ic  s t r u c t u r e ,  

and the term dec idab i l i t y  is equivalent for To (A) to so lvabi l i ty  or r e c u r s i v i t y  

and means the existence of an algorithm answering, for any closed formula ~ C 

L , ,  whether ~ E To(A) or not. 

We will use the following definitions, notations and facts concerning completely 

simple semigroups [C-P]. 

Let C be a completely simple semigroup, and let C ~ M ( H , I ,  J ,P)  be a 

representation of C by a Rees matrix semigroup, where H is the structure group 

of C, I and J are index sets, and P ~- (pj~ I J E J, i E I) is the sandwich-matrix. 

Then C is isomorphic to the set of all triples {(h, i, j )  ] h C H, i E I, j E J} with 

binary operat ion. ,  defined by 

(hi, il, j l ) "  (h2, i2, j2) = (hi "Pjli2" h2, il, j2), 

where hi • Pjli2 " h2 denotes the usual product in the group H. 

In all our proofs we will identify the elements of C with such triples for a fixed 
representation M ( H , I ,  J ,P) .  Our main results, however, do not depend on a 
particular Rees representation of a completely simple semigroup C (see Remarks 

1 and 3). 
Let e be the identity element of H. The sandwich-matrix P is called n o rm a l -  

ized if for some io C I, jo E J all the elements of the io-th column and all the 

elements of the jo-th row of P equal e. In this case we will say also that P is 

(io, j o ) -no rma l i zed .  

For every io E I,  jo C J let 

P(io,Jo) ~- ((pjio) -1 "Pyi" (pjoi)-I "Pyoio I J • g,i  • I). 

Then 

C ~- M ( H , I ,  J ,P)  ~_ M ( H , I ,  J,P(io, jo)), 

and P(io, Jo) is (i0, j0)-normalized. 

Let E ~ {((pj~)- l , i , j )  l i • I , j  • J}; for any i0 • I,  jo • J let 

g(io,Jo) ~- {(h, io,jo) i h • H},  e(io,jo) ~ ((pjoio)-l,io,jo). 

Then E is the set of all idempotents of C, H(io, Jo) is the maximal subgroup of 

C containing the identity element e(io,jo), and the mapping 

h ~-~ (h. (Pjoio)-l,io,jo) 
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defines an i somorphism of H onto H(io, jo) [C-P]. 

In the paper we usually formulate and prove the statements for the simplest 
possible signatures of H and C; all the results remain true after adding the unary 
operation symbol ( -1 ) and the constant symbol for the identity element ( e ) to 
the signature of H and (or) symbols for two unary operations ( - 1 )  and ( o )  to 
the signature of C (see the following remark). 

Remark O: The expression (y = x -1)  is equivalent on H to ( x . y  = e); the 

expression (x = e) is equivalent on H to (x .  x = x). Therefore,  every e lementary  

formula on H tha t  contains ( -1 ) and /o r  e can be effectively t ransformed to an 

equivalent e lementary  formula wi thout  ( -1 ) and e. Hence if a s ignature  a l  of 

H contains the mult ipl icat ion synlbol and a~ ~-~ a l  U {(-1) ,  e} is the s ignature  

obta ined  by adding the symbols  ( -1 ) and e to ~1, then To; (H) is decidable 

iff T~ 1 (H)  is decidable. For x C C let x ° denote the identi ty element of the 

max ima l  subgroup of C tha t  contains x, and let x -1 denote the inverse to x in 

this subgroup.  The  expression (y = x - l )  is equivalent on C to (x.y = y . x  = x°); 

the expression (y = x °) is equivalent on C to (x .  y = y .  x = x). Therefore,  every 

e lementary  formula on C tha t  contains ( -1 ) and /o r  ( 0 ) can be effectively 

t ransformed to an equivalent e lementary  formula wi thout  ( -1 ) and ( o ). Hence if 

a s ignature ~2 of C contains the mult ipl icat ion symbol  and a~* ~ ~2 U { ( -1) ,  (0)} 

is the s ignature  obta ined  by adding the symbols  ( -1 ) and ( 0 ) to cr2, then 

To F (C) is decidable iff T ~  (C) is decidable. 

Note  tha t  varieties of complete ly  simple semigroups are usually considered as 

defined by identities of the s ignature < . - 1  >; we mean  tha t  in the present  pape r  

too. 

In this section we formulate  the theorems and most  of the proposi t ions of the 

paper  tha t  concern the questions of decidabil i ty for e lementary  theories (their 

proofs are given in Sections 2, 3 and 4). We also discuss here the results obta ined 

and deduce corollaries. 

Let us begin wi th  a simple but  impor t an t  result. 

PROPOSITION 1: If  T<.> (H)  is undecidable, then T<.> (C) is undecidable. 

This means  tha t  decidabil i ty of T < . > ( H )  is necessary for decidabil i ty of 

T<.>(C) .  But  it is not sufficient, as will be shown below in Corol lary 1.5 of 

Theorem 1 and in the Example  given in Section 4. 

COROLLARY 1.1: Let C be a free non-monogenic completely simple semigroup 
of a variety ~ satisfying one of the following two conditions: 

1. V is the variety of all completely simple semigroups over metabelian groups; 
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2. V is the variety C8(A[m) of all completely simple semigroups over groups 

from Afro, where Arm is the variety of all nilpotent groups of c/ass m > 1. 
Then T<.> (C) is undecidable. 

Proof." If V satisfies (1) or (2), then, according to [J], the structure group H of 

C is a free metabelian (or a free nilpotent of class m, respectively ) group with 

more than one generator. In both cases T<.,-1,e>(H ) is undecidable: for the 

case (1) it follows from the results of [Ro], in the case (2) it was proved in [D]. 

Hence T<.> (H) is undecidable too (see Remark 0), and T<.> (C) is undecidable 

by Proposition 1. | 

The following Proposition gives a sufficient condition for decidability of 

T<.> (C) in the case of finite sandwich-matrix P. 

PROPOSITION 2: Let I and J be finite sets. If  T<.,a 1 ..... ~,>(H) is decidable, 

where a l , . . . ,  a ,  are symbols for all distinct elements of H belonging to P, then 

T<.> (C) is decidable. 

In the notation of Proposition 2, let erR be < . , a l , . . . , a n  >. Corollary 1.4 

below shows for finite I and J that the decidability of Top (H) is not necessary 

for decidability of T<.> (C). But if P is normalized, then the two theories are 

both decidable or both undecidable (Theorem 1). 

COROLLARY 1.2: 

1. I f  I and J are finite sets and H has a decidable elementary theory in 

the group signature with constant symbols for all elements of H, then for 

every J x I matrix P over H the elementary theory of M (H, I, J, P) in the 

semigroup signature < • > is decidable. 

2. I f  a completely simple semigroup C has a finite number of maximal sub- 

groups and they are abelian, then T<.>(C) is decidable. 

Proo~ Statement (1) follows directly from Proposition 2. Statement (2) follows 

by Proposition 2 from the decidability of T<.,a~ ..... as> (H) for any abelian group 

H and elements a l , . . . ,  an [M]. | 

COROLLARY 1.3: Let C be a free finitely generated completely simple semigroup 

of a variety V satisfying one of the following two conditions: 

1. 1) is a variety of completely simple semigroups over abelian groups; 

2. )2 is the variety C$(Afqm k) of all completely simple semigroups over groups 

from A/'qm k with q prime and m < q, whereAfqm ~ is the variety of all nilpotent 

groups of class m and of exponent qk. 
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Then T<.> (C) is decidable. 
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Proo~ If V satisfies (1) or (2), then, according to [J] and IRa], 

C ~- M ( H ,  I, J, P),  

where H is some abelian group (or, a free finitely generated group from Af qk, 
respectively), and I and J are finite sets. In case (1), T<.>(C) is decidable by 
Corollary 1.2 (2). In case (2), the decidability of T<.> (C) follows by Proposition 

2 from the decidability of the elementary theory with finitely many constants of 

the group H, proved de facto in [B]. | 

In the next corollary we will use a group H having elements al, a2, . . . ,  an, such 

that the following condition holds: 

(*) T<.>(H) is decidable, but T<.,al ..... ~ > ( H )  is undecidable. 

(Concerning examples of such groups H, see Theorems 3 and 10 from [M-R]; 
simpler examples may be constructed too.) 

COROLLARY 1.4: Let a group H and elements al, a2 , . . . ,  an E H satisfy (*), and 
let 

I ~ - { 1 , 2 , . . . , n } ,  Y ~ { 1 } ,  P ~-- (a l  a2 . . .  an) ,  

C ~ M ( H , I , J , P ) .  

Then T<.> (C) is decidable, although T<.,al ....... > ( H)  is undecidable. 

Proof: C ~- M ( H , I ,  J ,P ' ) ,  where P '  ~ (e e . . .  e) is the normalized form 
of P (see the definition of P(io,jo) at the beginning of the section). From 
the decidability of T<.>(H) it follows that T<.,¢>(H) is decidable (by Remark 
0). The decidability of T<.~> (H) implies by Proposition 2 the decidability of 
T < . > ( M ( H , I , J , P ' ) ) ,  i.e., of T<.>(C). | 

This corollary shows that Proposition 2 cannot be reversed. It also gives 

an example of two different Rees matrix representations M ( H ,  I, J , P )  and 

M ( H ,  I, J, pi) of the same completely simple semigroup, where I and J are finite, 

Top (H) is undecidable and Top, (H) is decidable. Such a situation is possible only 
if P is not normalized (see Remark 1 below). 

The following Theorem 1 gives the criterion for decidability of T<.> (C) in the 
case when the sandwich-matrix P is finite and normalized. 
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THEOREM ]: Let I and J be finite sets and P be a normalized J × I matrix 

over a group H. Then for C ~- M ( H ,  I, J, P), the following three conditions are 

equivalent: 

1. T< >(C) is decidable. 

2. T<.,a 1 ..... ~ ,>(H) is decidable, where a l , . . . , a m  are symbols for all distinct 
elements of H belonging to P.  

3. T<.,p> (H) is decidable, where membership in P is denoted by the unary 

predicate p on H. 

Remark 1: Let M ( H ,  I, J, P) and M(H' ,  I', J', P') be two Rees matrix repre- 

sentations of the same completely simple semigroup C. Assume now that I 

and J are finite and T~p (H) is decidable. Then, according to Proposition 2, 

T<.> (M(H, I,  J, P))  is decidable. Therefore T<.> (M(H' ,  I' ,  J', P'))  is decidable 

because of the isomorphism of the two semigroups. The finiteness of I and Y 

is equivalent to the finiteness of the number of maximal subgroups in C, which 

in turn is equivalent to the finiteness of I'  and J ' .  (Let us mention that from 

the description of isomorphisms between Rees matrix semigroups [P-R] it even 

follows that Ill--II'l and IJI-- Ig'l.) Therefore I '  and J '  are finite. Now if P '  

is normalized, then T~e, (H')  is decidable by Theorem 1. Thus the decidability 

of T~p (H) for a p a r t i c u l a r  Rees matrix representation of a completely simple 

semigroup C with a finite number of maximal subgroups implies the decidability 

of T~, e, (H') for any  Rees matrix representation M ( H ' ,  I' ,  J', P')  of C where P '  

is normalized. Therefore the criterion given in Theorem I does not depend in 

fact on a particular representation of C as a Rees matrix semigroup. 

Note that if I or J is not finite, then the decidability of T<.,p>(H) or the 

decidability of T<.,al ..... an> (H) may not imply the decidability of T<.> (C), as is 

shown in the Example from Section 4. This means, in particular, that Proposition 

1 cannot be reversed if I and J are infinite. The next corollary shows that in the 

case of finite I and J ,  Proposition 1 cannot be reversed either. This corollary 

uses the condition (*) defined before Corollary 1.4. 

COROLLARY 1.5: Let a group H and elements al, a2 , . . . ,  an E H satisfy (*), and 

let 

/ ~ { 1 , 2 , . . .  n}, J~.~-{1,2}, P ~ . ~ - ( :  e e . . .  e )  
' a l  a 2  • • • a n  ' 

N 

C ~- M ( H , I , J , P ) .  

Then T<.> (C) is undecidable, although T<.> (H) is decidable. 
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Proof.' The undecidabili ty of 7"<.> (C) follows directly by Theorem 1 from the 

undecidabili ty of T< ,e,al ....... > (H).  II 

Remark  2: Speaking about  formulas of signatures <- ,p  > and < . ,  al ,  . . . ,  a,~ > 

on H,  let us mention bialphabetical  identities, considered in [Mash]. For a group 

H with a marked subset P ,  a bialphabetical  identity is an expression of the kind 

Vx l . . .VxkVyl  • P . . . V y m  • P ( u ( x l , . . . , y m )  = v ( x l , . . . , y m ) ) ,  

where u and v are < • > terms on Xl, • • . ,  Xk, Yl, • • •, Ym, and Vyi • P means fo r  

e v e r y  Yi f r o m  t h e  se t  P .  

Such an expression is, obviously, equivalent on H to the formula 

m 

V X l ,  . . . , V X k  V Y l ,  . . . ~ V B m (  ( A R ( y i  ) ) --+ ( U ( X l , . ' ' , Y m )  = V ( X l , . . . , y m ) ) ) ,  
i=1 

where p is the unary  predicate for membership in P .  

If  P is a finite set {al . . . .  , an}, this expression is equivalent on H to the set of 

identities with fixed points 

VXl~ . . . ,  VXk (U(X l , . . . ,  X k ,  a i l , . . - ,  aim ) = v ( x l , . . . ,  Xk, a i , , . . . ,  ai,~)) 

for all the sequences ( i 1 , . . . ,  i ra )  over { 1 , . . . ,  n}. 

In [Mash] the correspondence between bialphabetical  identities of groups of 

finite exponent with marked subsets and completely simple semigroup identities 

was established, investigated and used in the finite basis problem. 

Now let us discuss the results of Section 3 of this paper.  This section concerns 

the general case, when I and J are not necessarily finite. First of all let us define 

the class of all two-sorted algebraic systems D(io,Jo) ,  which seems to be very 

natural ,  but  - -  as far as I know - -  has never been considered in the literature. 

For every i0 E I ,  j0 c J let D(io , jo )  be the two-sorted algebraic system with 

basic sets H and I × J of the signature < . ,  o, 7r >,  where • denotes multiplication 

on H;  0 denotes multiplication on I × J ,  defined by ( i l , J l )  o (i2,j2) = ( i l , j2) ;  r 

is the symbol of  the unary  function tha t  maps the set I × J into H according to 

the rule 

7r((i, j ) )  = (pjio) -1 "Pji" (Pjoi) -1 "PJo~o. 

For formulas of the signature < . ,  o, 7r > we will use variables of two kinds: 

yl,  Y : , . . .  with the domain H and Y1, Y2, . . .  with the domain I × J .  Let A ~- 

{D( io , jo )  l io E I ,  jo • J} .  
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The following Proposition gives a sufficient condition for decidability of 

T<.> (C) in terms of the two-sorted system D(i0, j0). 

PROPOSITION 5: IfT<.,o,~>(D(io,jo)) is decidable for some io E I, jo C J, then 
T<.> (C) is decidable. 

The condition given by Proposition 5 turns out to be necessary for decidability 

of T(C) with the constant e(i0, j0), as the following shows: 

PROPOSITION 6: IfT<.,o,~>(D(io,jo)) is undecidable for some io E I, jo E J, 

then T<.,e(io,jo)> (C) is undecidable. 

Let us note that Propositions 5 and 6 are based on Lemmas 3 and 4, which 

are interesting on their own too. The question whether the decidability of 

T<.o,~>(D(io,jo)) is equivalent to the decidability of T<.>(C) is still open in 

the general case (in the case of a finite sandwich-matrix it is equivalent). 

The criterion for decidability of T<.>(C) for the general case is given by the 

following Theorem. 

THEOREM 2: Let I and J be arbitrary index sets and P be a J × I matrix over 
a group H. Then for C ~- M(H, I, J, P), the following conditions are equivalent: 

1. T<.> (C) is decidable. 
2. T<.,o,,>(A) is decidable, where A is the class of all two-sorted systems 

D(io, Jo) for io E I, Jo E J. 

Remark 3: Let M ( H, I, J, P) and M ( H', I', J', P') be two Rees matrix represen- 

tations of the same completely simple semigroup, and let A, A' be their classes 

of two-sorted systems, respectively. Assume that  T<.,o,,> (Z~) is decidable. Then 

T<.>(M(H, I, J, P)) is decidable by Theorem 2. But 

M(H',  I', J', P') ~_ M(H, I, J, P) 

and therefore T<.>(M(H ~, I t, J', pt)) is decidable. Hence T<.,o,.> (A ~) is decid- 

able by Theorem 2. Thus the decidability of T<.,o,~>(A) for a p a r t i c u l a r  Rees 

matrix representation of a completely simple semigroup C implies the decidability 

of T<.,o,,~> (A t) for any  Rees matrix representation of C. Therefore the criterion 

given in Theorem 2 does not depend in fact on a particular representation of C 

as a Rees matrix semigroup. 

Note that using the description of isomorphisms between Rees matrix semi- 

groups [P-R] allows us to construct a bijection f :  A > A ~ such that every 

D(i0, jo) from A is isomorphic (as a two-sorted system) to its image f(D(io, Jo)) 
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from A ~. That  would give another proof of the fact that  T<. o, .>(A) is decidable 

iff T<. o,.> (A I) is decidable. But in order to involve the elementary theory of C 

(i.e., T<.>(M(H, I, J, P)))  we still need to use Theorem 2. 

In this paper we will prove only one corollary of Theorem 2. That  will be 

Theorem 3 from Section 4, which gives an example of a completely simple semi- 

group Co over the group H3 ~- {a, a 2, e} with infinite index sets I ~- J ~- 

N U {0} and with undecidable elementary theory. This example shows that  even 

in the case of a finite group Theorem 1 still needs the condition of finiteness of I 

and J .  

Let us mention that  among other corollaries of Theorem 2 are statements about 

relatively free completely simple semigroups, announced in [R92] and [R93], but 

they lie outside the framework of the present paper. 

2. P r o o f s  o f  s t a t e m e n t s  d i r e c t l y  i nvo lv ing  t h e  s t r u c t u r e  g r o u p  

First, we give the exact definition of the term e x a c t  i n t e r p r e t a t i o n  used 

informally in the previous sections. 

Definition: For arbitrary signatures a and a l  and for algebraic systems A and 

B of the signatures a and a l  respectively, we say that  

T~(A) is e x a c t l y  i n t e r p r e t a b l e  in To, (B), 

iff for each formula ~ C L~ one can effectively construct a formula ~* C L~ 1 

such that  

E T~ (A) iff ~* C T~ 1 (B). 

In this case we say also that  

A is exactly interpretable in B. 

Then the undecidability of To I (B) follows from the undecidability of Ta (A). 

LEMMA 1: Let 

 l(X, z) (x. z = x) A (z.  • = 

Then for any io E I, Jo E J: 
the formula (~l(x, e(io,Jo)) is valid on C 

iff x E H(io,Jo). 

Proof  

and 

Let x = (h, i, j ) .  The validity of a l (x ,  e(i0, J0)) on C means that  

(h , i , j )  . ((pjo~o)-l,io,Jo) = (h , i , j )  

((Pjoio)-l, io, Jo)" (h, i, j )  -- (h, i, j ) .  
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According to the definition of multiplication on C, 

(h, i , j )  . ((pjoio)-l,io, jo) = (h "Pjio " (Pjoio)-l,i, jo), 

((pjoio)-l,io,Jo) • (h , i , j )  = ((p jo io)  - 1  "Pjoi  " h, io,j). 

Therefore, C ~ al(X, e(io,Jo)) iffi  = i0 and j = J0, i.e., if[ x E H(io,jo). 

PROPOSITION 1: I f  T<.> (H) is undecidable, then T<.> (C) is undecidable. 

Proof: We interpret H in C using the above formula al(x,  z). Actually, for 

every closed prenex formula ~ E L<.> let us restrict its quantifiers, moving in qo 

from left to right and replacing subformulas of the kind Vx~ by Yx(al(x ,  z) -+ ~), 

and subformulas of the kind 3x4 by 3x(al (x, z) A 4) (for arbitrary formula 4). 

We will finally get the formula of the signature < • > with the free variable z. 

Let us denote it by ~l(z) .  Now let e(io,jo) be an arbitrary idempotent from C. 

Then, by Lemma 1, H(io,Jo) ~ qo iff C ~ ~01(e(io,Jo)). But H ~- H(io,Jo) for 

any io E I,  jo E J,  and, therefore, 

H ~ ~ iff C ~ Vz((z 2 = z) -+ ~l(Z)) 

(it is also possible to use the formula 3z((z 2 = z) A qol(z)) instead of Vz((z 2 = 

z) --+ qol(z))). Hence if T<.>(H) is undecidable, then T<.>(C) is undecidable 

too. | 

PROPOSITION 2: Let I and J be finite sets. / f  T<.,al ....... >(H) is decidable, 
where a l , . . . ,  a,~ are symbols for all distinct elements of H belonging to P, then 

T<.> (C) is decidable. 

Proof: Assume that I = { 1 , . . . , M } ,  J = { 1 , . . . , N } ,  and let T<.~ 1 ..... ,n>(H)  

be decidable. For any j E J,  i C I let us define on H the unary predicate rji(x), 
which holds iff x = pji, i.e., iff x = ak  for the corresponding ak E { a l , . . .  ,an}, 

which is the element of the j - th  row and i-th column of the sandwich-matrix 

P.  The correspondence rl: ( i , j )  ~ k can be effectively defined because of the 

finiteness of the matrix P. Let a ~---< - ,  { r j i  ] 1 <<_ j < N, 1 <_ i <_ M}  >. 

Replacing expressions ryi (x) 

the exact interpretation of 

T~ (H) is decidable. Now let 

signature a, where il  • i2 ~- il ,  

on the set J let us define j l  • j2 

iff j l  = j .  The theories T~(I) 
H x I × J be the direct product 

by x = ak for k = ~/(i, j )  in a-formulas on H gives 

the theory Ta(H) in T<.,~I,_.,~>(H ). Therefore, 

us consider the set I as the algebraic system of the 

and where r ; i( i l )  holds iff il  = i. Analogously, 

= j2, and define that the predicate rji(jl)  holds 

and T~(J) are, obviously, decidable. Let H ~- 

of these three algebraic systems of the signature 
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a. Then II  is the algebraic system of the signature a with the multiplication 

( h l , i l , j l ) "  (h2 , i2 , j 2 )  = ( h i "  h2 , i1 , j 2 ) ,  and for any io e I ,  jo E J the predicate 

rjoio(x ) holds on H iff x = (Pjoio, i0,jo). The theory Ta(II)  is decidable because 

of the decidability of  To(H) ,  T~( I )  and T~,(J) [M]. 

We will formally define on II a new binary operation, corresponding to the 

multiplication on C. Let 

J~(Xl, 3?2, 3?3) ~-  ~V, t(( V 
I ~ j < N  

r j~(v ) )  A (37~ . v "3?5 = x3)  A (t . v = v) A (v . t = v) 

A (x l"  t = xl)  A ( t . x 2  = x2)). 

Let xl ,  x2, xa, v, t be arbi t rary  elements of II, where xl = (hi, i t , j l )  for 1 = 1, 2, 3. 

The formula 

( V r,,(v)) A ( x l . v . x ~ :  3?3) 
l<i_<M 
I<_j<_N 

means tha t  there exist io C I ,  jo E J such tha t  v = (pjoio,io,Jo) and h3 = 

hi "P¢oio " h2 in H,  i3 = i l , j 3  = j2. For xl ,  x2, x3, v, satisfying these conditions, 

the formula 

( t  . v = v )  A (~ . t = v )  A (x~ . t = x ~ )  A ( t  . x~  = ~ )  

means that  t = (e, io, Jo) and tha t  Jo -- j l ,  io = i2. Therefore, if fl(xl,  x2, x3) is 

t rue on H, then x3 = (hi  "Pjli2 "h2, i1, j2).  Conversely, if x3 = (hi  "Pj~i~ "h2, i l ,  j2), 

we can take v = ( p j l i 2 , i 2 , j l ) ,  t = (e, i 2 , j l ) ,  and tha t  will prove the validity of 

~(Xl,  X2, X3) on H. 

Now let ~ be a formula from L<.>. Assume, wi thout  loss of generality, tha t  

quantifier-free subformulas of ~ are boolean combinations of a tomic formulas of 

the kinds Xl -- x2, x l -x2 = x3 or their negations, where x-s are variables. We can 

construct  the corresponding formula pl  c L~, replacing in ~ all a tomic formulas 

of the kind x l  • x2 -- x3 by/~(Xl,  x2, x3). We obtain tha t  

e T<.>(C) iff ~, ~ To(II).  

Therefore, T<.>(C) is decidable. | 

In the following Lemma we use the formula a l (x ,  z) from Lemma 1. 

LEMMA 2: Let 

,Xx,  z) = ~ ( x ,  z) A (3v) ( (v  ~ = v) A ( x .  v .  ~ = z)),  

and let  P be a ( io , Jo) -normMized  matrix.  Then:  
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the formula a(x ,  e(io, jo)) is valid on C 

iff x = (Pji, io,Jo) for i  ~ I,  j G J.  

Proo~ Let x = (h, i, j) .  The element Pjoio e P equals e, and therefore e(io, jo) = 

(e, io,jo). The validity of a(x, e(io, jo)) on C means that x E H(io , jo)  by Lemma 

1, i.e., i = i0, j = j0, and that there exists v = ( (p j~ i~) - l , i l , j l )  such that 

x .  v .  e(io, jo) = e(io, Jo). But 

x . v . e(io,jo) = (h, io,jo) " ((pj~i~) -1, i l , j l )  " (e, i0, jo) 

= ( h .  Pjoi~ " (Pj~i~)-l " Pj~io " e, io, Jo) = (h .  (Pj~il)-I io, jo), 

because Pjoi~ = Pjxio = e in the (io, jo)-normalized matrix P. Therefore, 

x . v  "e(io,jo) --e(io,Jo) i f fh =Pj~il ,  i.e., i f fx - -  (Pjli~,io,jo). | 

PROPOSITION 3: Let P be an (io,jo)-normalized matrix. I f  T<.,v>(H ) is unde- 

cidable, where p is the unary predicate for membership in P,  then T<.,e(io,jo)> (C) 

is undecidable. 

Proof: Recall the mapping h ~-+ (h .  (Pjoio) -1,io,jo), which defines the isomor- 

phism of groups H and H(io, Jo) (see Section 1). The element Pjoio equals e, and 

therefore e(io, j0) -- (e, i0, j0). Hence for any h E H the image of h is (h, i0, j0); 

in particular, the image of Pji is (Pji, io, Jo) for any i C I, j C J. 
Now for every closed prenex formula ~ E L<.,p> let us restrict its quantifiers 

using the formula a l (x ,  z), as in the proof of Proposition 1. In the resulting 
formula let us replace all atomic formulas of the kind p(x) by a(x, z). Finally, 

we will obtain a formula from L<.> whose only free variable is z. Let us denote 

this formula by qo2(z). From its construction and Lemmas 1 and 2 it follows that 

H ~ qo i f fC ~ ~2(e(io,jo)).  

Hence if T<.,v> (H) is undecidable, then T<.,e(i o 50)> (C) is undecidable too. | 

The following proposition is a simple fact from model theory. Here cr is an 

arbitrary signature. 

PROPOSITION 4: Let M be an algebraic system of a signature a; suppose that 

its theory T~(M)  is decidable; suppose also that "~(x) is a formula from Lo such 

that A ~ {x E M [ M ~ ~/(x)} is finite, say A = {al , . . . ,am}.  Let a* 

a U {ax , . . . ,  an} be the signature obtained by adding the constants a t , . . . ,  a,~ to 

a. Then T~. (M)  is decidable. 

Vroo~ Our aim is to interpret (exactly) the theory T~. (M) in T~(M).  Let T 

be any permutation on {1, . . .  ,n}. Assume first that  ~- satisfies the following 

condition: 



Vol. 128, 2002 C O M P L E T E L Y  S I M P L E  S E M I G R O U P S  369 

(**) for every formula ¢ ( x l , . . . , x n )  E L~ the formula ¢ ( a l , . . . , a n )  is valid 

on M iff the formula ¢(aT(1) , . . . ,  aT(,~)) is valid on M. 

Then let us define 

CT(x  . . . .  = 

Assume now that T does not satisfy (**), and let ¢~.(xl , . . .  ,Xn) be a formula 

from L~ with only free variables x l , . . . ,  x~ such that: 

(***) CT(a l , . . . ,  aN) is valid on M, but CT(aT(1),..., aT(~)) is not valid on M. 

Let S~ be the group of all permutations on {1 , . . . ,  n}, and let 

n 

i = 1  l<i<j<n TESn 

The formula ~ ( x l , . . . ,  x,~) belongs to L~, and it is valid on M iff 

Xl  ---- a T ( l ) ,  • • . , X n  ---- a T ( n ) ,  

where a permutation T E S~ satisfies (**). 

Now for every formula ~ ( x l , . . . , x ~ )  C Lo with the only free variables 

x l , . . . ,  x,~ we can construct the corresponding closed formula ~b E L~ as follows: 

Xn) A 
Note that the following condition holds: 

(****) the formula ~ ( a l , . . . ,  an) is valid on M iff the closed formula ~ of the 

signature a is valid on M. 

Now let 0 be a closed formula of the signature a*. Assume, without loss 

of generality, that 0 does not contain the symbols x l , . . . , X n .  Let us replace 

the symbols a l , . . . ,  an in 0 by x l , . . . ,  xn, respectively, and denote the resulting 

formula by ~o(xl,...,Xn). Then ~t~(Xl,...,Xn) e Lo and 0 is ~o(al,...,an). 
We obtain by (****) that ~ e ( a l , . . .  ,an) C T~.(M) iff ~0 C T~(M). Therefore, 

the decidability of T~. (M) follows from the decidability of T~(M). Proposition 

4 is proved. | 

Remark 4: We proved that if M and A satisfy the conditions of Proposition 

4, then there exis ts  an algorithm that transforms every closed formula from 

L~u{~, ..... ,~} to a corresponding closed formula from Lo. This algorithm uses 

I Sn I = n! formulas CT(x l , . . . ,  xn), where some of them satisfy (***) and others 

coincide with the formula xl = xl (the last case holds iff T satisfies (**)). We 

know only that  there exis ts  a finite set of such formulas {~bT I T E S~}, but we do 

not give an e f fec t ive  way to find them. Therefore, the proof of this Proposition 
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is not constructive, and the same is true for the proofs (1) ~ (3) and (3) ~ (2) 

of the following Theorem. 

THEOREM 1: Let I and J be finite sets and P be a normalized J x I matrix 

over a group H. Then for C ~- M(H, I, J, P), the following three conditions are 

equivalent: 

1. T<.>(C) is decidable. 

2. T<.~ 1 ..... ~n> ( H) is decidable, where a l , . . . , a n  are symbols for all distinct 

elements of H belonging to P. 

3. T<.,p> (H) is decidable, where membership in P is denoted by the unary 

predicate p on H. 

Proof: (2) ~ (1) by Proposition 2. 

(3) ~ (2) by Proposition 4, when we take: 

a ~ < .  ,p >; M ~ H; A is the set of all distinct elements of H belonging to 

P; 7(x) ~ p(x). 

(1) ~ (3). Let T<.>(C) be decidable, and let i0 • I,  j0 • J be such that P 

is (i0, j0)-normalized. Then T<. ~(~o,jo)> (C) is decidable by Proposition 4, when 

we take: 

a ~ - < . > ;  M ~ C; A ~- E,  the set of all idempotents of C; ~(x) ~ x 2 = x. 

Now the decidability of T<.,p> (H) follows from the decidability of T<.,~(io,jo)> (C) 

by Proposition 3. I 

3. Proofs of  s ta tements  involving two-sorted systems 

In this section we deal with the general case of a completely simple semigroup 

C, presented by a Rees matrix semigroup M(H, I, J, P) over a group H, where 

I and J can be infinite, P is not necessarily normalized. The following lemma 

gives an exact interpretation of C in the two-sorted system D(io,jo) for every 

i0 • I,  j0 • J.  

LEMMA 3: There exists a recursive mapping L<.> ~-~ L<.,o,~>, giving for every 

closed formula ¢ • L<.> a corresponding closed formula ¢1 • L< ,o,,>, in such 

a way that, for every io • I, jo • J: 

C ~ ¢ iffD(io,Jo) ~ ¢1. 

Proof: We will effectively construct this mapping. Let ¢ be a formula from L<.>. 

Assume without loss of generality that Xl,. •., x,~ are all the variables occurring in 

¢, and that quantifier-free subformulas of ¢ are boolean combinations of atomic 
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formulas Xkl = xk2, xkl "Xk2 = xk3 or their negations. To each Xk we match 

the pair of variables Yk, Yk; the idea is that if xk stands for (h , i , j ) ,  then Yk 

stands for h E H and Yk stands for (i, j )  C I x J.  Let us replace every quantifier 

~xk by 3yk3Yk, every quantifier Vxk by VykVYk, every formula xkl = xk2 by 

(Yk~ = Yk~) A (Yk~ = Yk~), and let us replace every formula Xk~ • Xk~ = Xka by 

(Yk~ o Yk2 = Yk3) A (Yk, " ~(Yk2 o Yk,)  "Yk2 -- Yk3)" 

Denote by ¢1 the formula from L<.,o,~> obtained by this algorithm. 

Assume now that ¢ is a closed formula. Then ¢1 is closed too, and for 

any i0 E I,  J0 E J the validity of ¢ on the semigroup M ( H ,  I, J, P(io, jo)) is 

equivalent to the validity of ¢1 on D(io, jo). This equivalence follows immedi- 

ately from the presentation of M ( H ,  I, J, P(io, Jo)) by triples. The semigroup 

M ( H ,  I, J, P(io, jo)) is isomorphic to M ( H ,  I, J, P), i.e., to C (this was men- 

tioned in Section 1; for the proof see [C-P]). Therefore, C ~ ¢ iff D(io,Jo) ~ ~bl. 

Lemma 3 is proved. | 

PROPOSITION 5: IfT<.,o,~>(D(io,Jo)) is decidable for some io E I, jo E J, then 
T<.> (C) is decidable. 

Proof: This follows directly from Lemma 3. | 

In the following Lemma 4 we will formally define the system D(io,Jo) in C, 

using one-parameter formulas from L<.>. The proof will generalize the proof of 

Proposition 3. 

LEMMA 4: There exists a recursive mapping L<.,o,~> F-~ L<.>, giving for every 

closed formula ~ c L<.,o,~> a corresponding formula ~l(z)  E L<.>, in such a 

way that, for every io C I, Jo E J: 

D(io,jo) ~ ~o iff C ~ ~l(e(io,jo)).  

Proo£" Let us effectively construct this mapping. We will write down a set q) of 

7 formulas from L<.>, containing the parameter z and such that  for every i0 E I, 

J0 C J the set of 7 formulas obtained from a5 by substitution of e(io,jo) for z 

defines in C a two-sorted system isomorphic to D(io, jo). Let 

z) z = x)  A - -  x )  

be the formula from the Lemma I, and let 

 2(x) x 2 = x .  
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Let us fix arbitrary io E I,  jo E J.  Then the formula a l ( x , e ( i o , j o ) )  picks 

out from C the group H ( i o , j o ) ,  and the formula a2(x) picks out from C the 

set E of all idempotents. The mapping U(h)  .-~ ( h .  (pjo~o)-~,io,Jo) defines 

an isomorphism of H onto H ( i o , j o )  (see Section 1). It is easy to see that the 

mapping V ( ( i , j ) )  ~- e ( i , j )  defines a one-one correspondence between I x J and 

E. Let 

Cg3(Xl ,  X2,  Z) ~ ~ 1 "  (Z " 22  " Z) ~- Z. 

It is easy to check for the following table, that any Yl, Y2, Y3 E H,  any Y1, }I2, Y3 E 

I x J and the corresponding 

uk ~- U(yk)  = (Yk " (P jo io ) - l , i o , j o ) ,  vk ~ V ( Y k )  = ( (p jk ik ) - - l , i k ,  jk )  

for 1 < k < 3 satisfy the condition: 

Every equality from the left column holds on D ( i o , j o )  iff the corresponding 

equality from the right column holds on C. 

Y l  = Y2 

Yl • Y2 = Y3 
YI  = Y2 
YI ° Y2 =II3 

~ ( 5 )  = yl 

U l  ~--~ U2 

U l  " U2 ~ ?~3 

V 1 ~ V 2 

( V l ' V 2 ) ' V 3  = V3" ( V l ' V 2 )  

a 3 ( u l ,  v l ,  e(io, j0)); that is 
Ul . (e( io , jo)  . v l  . e ( io , jo ) )  -- e( io,Jo) 

Consider, for example, the last row of the table. Let us take arbitrary yl E H,  

II1 = (il, j l )  C I x J ,  and let 

ut  ~- U(y l )  = (Yl " (Pjoio)- t , io , jo)  C C, 

vl ~ V (V l )  = ( (p j l~ l ) -~ , i~ , j l )  e C. 

Then, according to the definition of multiplication in C, 

Ul" (e(i0, Jo) " v l  " e(io, jo) ) 

= (Yl"  (P jo io ) - l , i o , j o )  " ( (P jo io ) - l , i o , j o )  " ( ( P j l Q ) - I , i l , j l )  " ( (P jo io ) - l , i o , j o )  

= (Yl"  (Pjoio) - t  "Pjoio" (Pjoio) -1  "Pjoi~ " (Pj~i,) -~ "Pj~io" (P jo io ) - l , i o , j o )  

= (Yl"  (Pjoio) -1  "Pjoi ,"  (Pj~i~) -1  "Pj~io" (Pjo io) - l , io ,  Jo), 

and therefore the formula ul-(e( i0 ,  j o ) . v l ,  e(i0, J0)) = e(io, Jo) on C means that 

the equality 

(Yl " (Pjoio) -~ "Pjoi~ " (Pj~i~) -1  "Pj~io " (Pjo io) - l , io ,  jo)  = ( (P jo io ) - l , io , Jo)  
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holds on C. 

But that  is equivalent to the equality Yl = (Pjlio) -1 "Pjl~I " (Pjoil) -1 "Pjoio on 

H.  The last equality means exactly that  ~r(Y1) = yl in D(io, jo) ,  q.e.d. 

Now let us consider symbols ul,  u2, u3 as variables with the domain H(io, jo) C 

C, and symbols vl, v2, v3 as variables with the domain E C_ C. Then the formulas 

from the right column of the table define on H(io,Jo) and E the predicates 

corresponding to the signature < . ,  o, 7c >, where H(io, jo) and E are considered 

as two basic sets of a two-sorted system. This system is isomorphic to D(io,Jo). 

Let • be the set of formulas consisting of a l ,  a2, (~3 and of the 4 other right-side 

formulas from the table. I t  satisfies the conditions mentioned at the beginning 

of the proof. 

The last step of the proof of this lemma is standard, but nevertheless let 

us write it down. Let ~ be a formula from L<.,o,~>. Assume, without loss 

of generality, that  Yl , . . - ,  Y~, Y1,- .- ,  Ym are all the variables occurring in ~, and 

that  quantifier-free subformulas of ~ are boolean combinations of atomic formulas 

of the kinds from the left column of the table or their negations. To each Yt we 

match the variable ut, to each Yk the variable vk, and replace in ~ all the 3yt, Vyt, 

3Yk, VYk by 3ut, Vut, 3Vk, Vvk respectively. In the quantifier-flee subformulas we 

replace atomic formulas of the kind 7r(Yk) = Yt by o~3(ut, vk, z), and we replace 

other atomic formulas by the corresponding formulas from the right column of 

the table. After that  we restrict the quantifiers, using a l ( u t , z )  to restrict by 

H(io,  Jo) the quantifiers on ut-s, and using a2(vk) to restrict by E the quantifiers 

on vk-s. The resulting formula belongs to L<.>, it does not depend on io, jo and 

has the free variable z. 

If ~ is a closed formula, then the resulting formula has no other free variables, 

and we denote it by ~l(z) .  From the construction of ~ ( z )  it follows tha t :  

D(io, jo)  ~ ~ i f f  C ~ ~ol(e(io,jo)). 

Lemma 4 is proved. | 

PROPOSITION 6: I f  T<.,o,,~>(D(io,Jo)) is undecidable for some io E I, jo e J,  

then T<.,c(~o,Jo)> (C) is undecidable. 

Proof: This follows directly from Lemma 4. | 

Remark  5: If P is an (i0,j0)-normalized matrix, the function ~r on D(io, jo)  

turns out to be as follows: 

~r((i, j ) )  = (Pjio ) -  I " P j i  " ( P j o i  ) - 1  " P j o i o  --~ P j i ,  because Pjio = Pjoi = PJoio = e, 
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Therefore, the formula 3Y(Tr(Y) = y) defines the unary predicate on the basic set 

H of D(i0, j0), corresponding to membership in P (we denote this predicate by p 

- -  see previous sections). Hence the group H itself, considered in the signature 

< . ,  p >, is exactly interpretable in D (i0, j0) (note that if P is not normalized, that 

may be impossible for any i0 E I, j0 E J). Now, using the exact interpretation of 

D(io,jo) in C with the constant e(io,jo) in the signature given by Lemma 4, we 

will finally get the exact interpretation of H in C for the mentioned signatures. 

This provides another proof for Proposition 3, although the algorithm obtained 

here is more complicated than the original one. 

THEOREM 2: Let I and J be arbitrary index sets and P be a Y × I matrix over 

a gro71p H. Then for C ~- M(H,  I, J, P), the following conditions are equivalent: 

1. T<.>(C) is decidable. 

2. T<.,o,~>(A) is decidable~ where A is the class of all two-sorted systems 

D(io, jo) for io E I, j o e  J. 

Proof: Let T<.> (C) be decidable, and let ~ be a closed formula from L<.,o,~>. 

Then for ~l(z) from Lemma 4 we have: 

zx V z ( ( z  2 = z)  

Therefore T<. o,~> (A) is decidable. 

Conversely, let T<. o,~>(A) be decidable, and let ¢ be a closed formula from 

L<.>. Then for ¢1 from Lemma 3 we have: 

C ~ ¢ i f f A ~ ¢ l .  

Therefore T<.>(C) is decidable, and Theorem 2 is proved. | 

4. A n  e x a m p l e  of  a comple t e ly  s imple  semigroup  wi th  a f ini te  s t r u c t u r e  

g roup  a n d  w i t h  undec idab l e  e l e m e n t a r y  t h e o r y  

Let 

H3 ~--- {a, a 2, e} with a3 = e, I ~ J ~ N @ { 0 } ,  

and let K ~- {m(1) , . . . ,m( i ) , . . . }  be a recursively enumerable non-recursive 

subset of N. 
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Now let 

where 

Let  

P ~  

e e . . .  e . . . ' ~  

e a . . .  a . . .  

e a . . .  a . . .  
e a . . .  a 2 . . .  

e a . . .  a 2 . . .  
e a 2 . . .  a 2 . . .  

e a 2 . . .  a 2 . . .  

{ e ,  

Pji = a, 
a 2 , 

i f j  = 0 o r  i = 0 ,  

if i > 0 and  0 < j <_ re(i) ,  
if i > 0 and j > m ( i ) .  

fro =- M(H3,I,  J,P).  

The a im of this  sect ion is to prove t ha t  T<.> (Co) is undecidable .  

In  the  next  l emma  we will use the  two-8orted sys tem D ( i o , j o )  for io = 0 C I ,  

Jo = 0 c J .  The  sandwich-ma t r ix  P is (0, 0)-normal ized;  therefore,  according to 

R e m a r k  5 from Sect ion 3, the  funct ion ~r on D(0 ,  0) is as follows: 7r(( i , j ) )  = Pji.  

LEMMA E 1: Let  

(VY2)((Y1 o Y2 = Y1) + (~r(Y2) = e V 7r(Y2) = y))) .  

Then/~I(Y) is valid on D(O, O) iff  y = a. 

Proof'. For any Y1 = ( i l , j l ) ,  Y2 = ( i2, j~)  the  equal i ty  Y1 o Y2 = ]I1 means  t ha t  

J l  = j2,  i.e., t ha t  ~r(Y1) = Pjlil  and 7r(Y2) = Pj2~2 belong to the  same j l - t h  row 

of P .  Therefore,  informal ly  speaking,  the  val id i ty  of/31(y) on D(0,  0) means  t ha t  

the  following condi t ion  holds: 

(E*) y ¢ e and  there  exists  j l  E J such t ha t  the  j l - t h  row of P conta ins  y at  

least  once and does not  conta in  e lements  t ha t  differ from e and  y. 

Suppose  now t h a t  y = a. Then  we can take  j l  = 1. There  is no a 2 in row 

number  1 of P ,  because  m(i2)  > 0 for any i2 > 0. Therefore,  (E*) holds. 

Conversely, suppose  t ha t  (E*) holds. Then  y ¢ a 2, because  it is a lways possible  

to find i2 such t h a t  m(i2) will be bigger  t han  j l ,  and  therefore Pjl,~2 will be equal  

to  a. Hence, y = a, and  the l emma is proved. | 
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LEMMA E 2: For any m > 1 let 

7m ~-  ~Y(~I(Y) /k (~YI , . " ,  Ym)((TT(Y1) = y)A 

l <_jl <je <m 

(VYm+l)(( A ((YJ # Ym+l) A (Yj o Ym+l = Yra+l))) -+ (rr(Ym+l) • Y)))))- 
l<j<_m 

Then D(0,0) ~ 7.~ i f f m  E K .  

P r o o f  For any Y1 = ( i l , j l ) ,  ]12 -- (i2,J2) the equality ]I1 o ]I2 -- ]I2 means 

that il -- i2, i.e., that rr(Y1) = Piiil and ~r(Y2) -- Pj2i2 belong to the same il- 
th column of P. Therefore, informally speaking, the validity of 9'm on D(0, 0) 

means, according to Lemma E 1, that the following condition holds: 

There exists il E I such that the i l- th column of P contains a at ra different 

places, but it does not contain a at m + 1 different places. 

According to the definition of P, for every il > 0 the i l - th  column of P contains 

a at m ( i l )  different places exactly. Therefore, ~fm means that there exists il > 0 

such that m = m( i l ) ,  which means m E K.  The lemma is proved. I 

PROPOSITION E 1: T<.,o,r>(D(0,0)) is undecidable. 

Proo~ For any m > 1 the formula ~/m defined in Lemma E 2 is a closed formula 

from L<.,o,~,e>, and it belongs to T<. o,.,e>(D(0, 0)) i f fm E K.  The set K is not 

recursive, therefore T<.,o,~,~> (D (0, 0)) is undecidable. Hence T<.,o,. > (D (0, 0)) is 

undecidable too, because every atomic formula y = e on D(0, 0) can be replaced 
b y y  2 = y. I 

The next lemma gives a property that specifies the system D(0, 0) in the class 

A ~- {D(io, Jo) I io C I, j0 C J}. More precisely, this lemma establishes the 

negation of such a property. 

LEMMA E 3: For every io E I, jo C J ,  where io ~ 0 or jo ~ 0, there exist 

il C I ". io, j l  C J " jo such that  in the matr ix  P(i0, jo) the element  o f  the j l - t h  

row and i l - th  column equals e. 

Proof: Let qji denote the element of the j - th  row and i-th column of P(io, Jo). 

Then, according to the definition of P(io, jo) (Section 1), 

qji ~- (Pjio) -1 " Pji " (Pjoi) -1 "Pjo/o" 
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CASE 1: I f io  = O, Jo > O, let us take any 0 < il E I such that m(i l )  > Jo, and 

let us take Jl ~ m ( i l ) .  Then j l  E J \{O, jo}. Hence we get: 

Therefore, 

C A S E  2:  

i o = 0  
( 0 < i l )  A ( 0 < j o  < m ( i l ) )  
( 0 < i l )  A (0 < j l = m ( i l ) )  

P j i o  = Pjoio  ----e, 

P j o i l  = a ,  

P i l l 1  = a .  

q j l i l  ~- e - 1  " a • a - 1  - e = e. 

If io > 0, Jo = 0, let us take any 0 < il C I \{ io}  and j l  ~ 1. Then: 

Therefore, 

jo  = O ~ Pjoio = Pjoi~ = e, 
( 0 < i l )  A(jl  =1)  ~ p~l~, = a ,  
(0<io)  A(j~ : 1) ~ PJ~o = a .  

q j l i l  : a - 1  " a • e - 1  • e : e .  

CASE 3: If io > 0, J0 > 0, let us consider two subcases: 

(a) jo <- m( io ) .  Let us take il E I \ { i o }  such that Jo _< m(i l) ,  and let Jl ~ 0. 

Then: 
j l  = 0 ~ P j l i o  = P i l l 1  = e ,  

O < jo <_ m ( i l )  ~ PJo~, = a, 
O < jo <_ m ( i o )  ~ Pjoio = a. 

Therefore, 

qj l i l  : e - 1  " e ' a - l  " a  = e .  

(b) jo > m( io ) .  Let us take il ~ 0, j l  > jo. Then: 

i l  = 0 ~ Pjoil = P j l i l  ----- e, 
jo  > m ( i o )  ~ Pjoio = a2, 
j l  > jo > m ( i o )  ~ Pjlio = a 2 .  

Therefore, 
q j l Q  ---- ( a2 )  - l " e ' e  - l ' a  2 : e. | 

Now let us specify the system D(0, 0) in the class A by an elementary formula. 

As in the proof of Lemma E 3, for fixed io E I,  jo E J we will denote by qji the 

element of the j - th  row and i-th column of the matrix P(io, jo). 

LEMMA E 4: Let 

e ~ 3 Y ( ( T r ( Y )  = e) A (VY~)((Tr(Y1) = e) ~ ((Z o Y~ -- Y1)V 

(Y o Y~ = Y)))). 
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Then D(0,0) ~ e and D(io,jo) ~ ~ for any io C I, Jo E J such that io ~ 0 or 

l o g O .  

Proof: For every io e I,  j o e  J ,  Y = (i, j ) ,  Y1 = (il, Jl) the equality (Y o Y1 = 

]71) means on D(io,Jo) that  i = il,  i.e., that  7c(Y) = qj~ and lr(Y1) = qjxil belong 

to the same i-th column of P(io, Jo); the equality (Y o ]I1 -- Y) means on D(io, Jo) 

that j = j l ,  i.e., that  ~r(Y) -- qji and 7r(Y1) -= qjlil belong to the same j - th  row 

of P(io, Jo). Therefore, informally speaking, the validity of e on D(io, Jo) means 

that in P(io, J0) there exist a row (number j )  and a column (number i) such that 

the equality qjli~ -- e implies at least one of the equalities il -- i or j l  = j .  That  

means, therefore, that every e of P(io, jo) belongs to the j - th  row or to the i-th 

column. 

The last condition is true for io -- 0, j0 -- 0, because in this case P(io, jo) is 

simply P,  and we can take il ~ 0, j l  ~- 0. Therefore D(0, 0) ~ E. 

If i o ¢  0 or J o ¢  0, the condition considered above is false on D(io,jo).  In- 

deed, in this case, in addition to the elements of the io-th column and to the 

elements of the jo-th row of P(io,jo) (which all equal e because P(io,jo) is 

(io,jo)-normalized), there exist il  ¢ io and j l  ¢ jo such that  qjli~ -- e (see 

Lemma E 3). Therefore, if io =~ 0 or jo ~ 0, then D(io,jo) ~ -~¢. | 

THEOREM 3: T<.>(Co) is undecidable. 

Proof: Let ~ be a closed formula from L<.,o,~>. Then from Lemma E 4 it 

follows that  D(0, 0) ~ 9~ iff A ~ (e --+ ~). Therefore, the undecidability of 

T<.,o,~>(D(0, 0)), established in Proposition E 1, implies the undecidability of 

T<.,o,~> (A). Hence, T<.> (Co) is undecidable by Theorem 2. | 

[B] 

[c-P] 

[D] 
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